В конце мая 2012 года появились первые сообщения о том, что группа европейских учёных добилась передачи квантовых свойств между двумя фотонами на расстояние свыше 143 км. Новость вышла вскоре после заявления китайских физиков об успехе аналогичного эксперимента с более скромным результатом и выглядела политическим реваншем. За прошедшее время результаты были подвергнуты тщательной проверке, а детали исследования опубликованы в научной статье авторитетного издания Nature.
Физики из университета Вены и австрийской Академии наук при участии специалистов из института имени Макса Планка в Гархинге действительно осуществили квантовую телепортацию на рекордное расстояние. Успех имеет важное практическое значение, так как минимальная высота спутников на низкой орбите составляет 160 км над поверхностью Земли. Таким образом, решение задачи высокоскоростной передачи данных между спутниками и наземными станциями с использованием квантовых свойств можно считать делом ближайшего будущего.
Также www.computerra.ru/vision/534910/ Квантовая телепортация: на пути к квантовому компьютеру
читать дальше
В ходе эксперимента группе исследователей под руководством Антона Цайлингера (Anton Zeilinger) удалось передать квантовое состояние двух запутанных фотонов между двумя Канарскими островами – Ла-Пальма и Тенерифе, расстояние между которыми превышает 143 километра. Предыдущий рекорд, установленный китайскими учёными, составлял 97 км.
Помимо традиционно выделяемых преимуществ квантовых систем передачи данных — таких, как плотность кодирования, скорость и защищённость, Цайлингер отмечает ещё одно важное свойство: квантовая телепортация возможна даже в том случае, когда точное взаимное расположение приёмника и передатчика неизвестно...
Дальнейшие усилия исследователей направлены не только на повышение расстояния эффективной передачи данных, но и на разработку концепции глобальной сети – Интернета будущего, в основе которого будут лежать те или иные квантовые свойства частиц. Результаты эксперимента дают основания полагать, что отдельные узлы такой сети могут быть соединены без оптоволоконных или
каких-либо других кабелей.
Автор: Олег Нечай |
Раздел: Статьи | Дата: 28 мая 2010 года
читать дальше Проведён успешный эксперимент по квантовой телепортации фотонов на расстояние более 16 километров. Попробуем "на пальцах" объяснить суть достижения. Физики из Научно-технического университета Китая и пекинского Университета Цинхуа провели успешный эксперимент по квантовой телепортации фотонов в свободном пространстве на расстояние более 16 километров. 16 мая 2010 года сообщение об этом знаменательном событии появилось в научном журнале Nature Photonics. Впрочем, эта новость вряд ли о чём-то скажет людям, не знакомым хотя бы с основами квантовой физики, а слово "телепортация", известное многим лишь по научной фантастике, вообще может ввести в заблуждение относительно реального смысла проведённого опыта. Между тем, это большое событие для современной науки, а чтобы понять его значение, придётся немножко разобраться в основах квантовой физики. Далее мы попробуем объяснить их "на пальцах".Начнём издалека. Как известно, атомы состоят из более простых субатомных частиц – положительно заряженных протонов и нейтральных нейтронов, образующих ядро, и отрицательно заряженных электронов, которые составляют электронное облако, окружающее ядро. По величине спина, то есть момента импульса, или, грубо говоря, момента вращения, элементарные частицы делятся на два класса: фермионы с полуцелым спином – это как раз упомянутые электроны, протоны, нейтроны и нейтрино, – и бозоны с целым спином – это фотоны, мезоны и глюон. Для наблюдения и экспериментов в микромире особенно удобен фотон –безмассовая частица с нулевым зарядом, квант электромагнитного излучения ("световой квант", по определению Эйнштейна), существующий только в процессе движения со скоростью света. Фотон одновременно демонстрирует свойства и частицы, и волны, то есть корпускулярно-волновой дуализм. Свойства фотона (света) описываются и как свойства распространения волны, и как свойства частицы при взаимодействии с веществом. Универсальность наглядно демонстрируемого фотоном корпускулярно-волнового дуализма для любых частиц – один из базовых постулатов квантовой механики.
В отличие от "большого мира", в микромире объекты могут находиться в так называемой суперпозиции, то есть одновременно пребывать в неких промежуточных, альтернативных и взаимоисключающих с точки зрения классической механики состояниях. Если прибегнуть к привычному для компьютерщиков двоичному коду, то некая частица может одновременно означать и ноль, и единицу, а вероятность того, какое значение она примет, описывается волновой функцией. Пока мы не измерили это значение, частица пребывает именно в этом вероятностном состоянии, а измерив, мы немедленно изменяем частицу и получаем на выходе одно из вероятных значений.
Ещё одно важнейшее явление микромира – так называемая квантовая сцепленность или запутанность. Смысл этого явления заключается в том, что квантовые состояния двух или более частиц может быть связаны друг с другом, даже если эти частицы разнесены в пространстве. Квантовая сцепленность объясняет самые различные природные процессы, например, фотосинтез в растениях, при котором энергия солнечного света мгновенно "телепортируется" от "принимающих" молекул к молекулам, ответственным за электрохимические преобразования. Причём передаётся именно некоторое вероятностное состояние частицы, а не какая-то информация о нём, ведь частица находится в суперпозиции.
Здесь мы, наконец, приближаемся к сути явления квантовой телепортации. Сцепленность можно задать искусственно, поместив несколько
частиц в одинаковые условия и воздействуя на них, например, лучом лазера при температуре, максимально близкой к абсолютному нулю,
остановив хаотическое движение. В результате, если измерить состояние одной частицы, можно мгновенно определить и состояние всех, запутанных с ней. При этом исходная частица, состояние которой перенесется на новую, изменится сама, поскольку двух частиц с одинаковыми квантовыми состояниями быть не может: согласно теореме о запрете клонирования, невозможно создать идеальную копию произвольного неизвестного квантового состояния. То есть уничтожение начального квантового состояния – это необходимое условие телепортации.